

# Technology Assessment & Transfer, Inc. Transparent Spinel





Bridging the Gap Between Research and the Marketplace



**Optical Ceramics Division** 

# **Technical Data**

# **Transparent Spinel Ceramics**

**Spinel (MgAl**<sub>2</sub>**O**<sub>4</sub>**) Optical Ceramic** is a transparent polycrystalline ceramic whose combination of high hardness, light weight and broadband optical properties make it an ideal material for stringent optical applications and transparent armor. Its transmission window spans the range from 0.19 um to 6.0 um and exceeds that of single crystal sapphire and ALON<sup>TM</sup>. Additional advantages versus sapphire and ALON include optical isotropy and high temperature stability, respectively.



#### **Crystal Structure**

The crystal structure of the spinel is based on an FCC close-packed oxygen sub-lattice in which a fraction of the octahedral and tetrahedral sites are filled. The polycrystalline structure of the magnesia spinel is optically isotropic. Magnesia spinel undergoes no polymorphic transformations and hence is devoid of any thermally induced phase changes.





#### Wavelength (µm)

#### Absorption coefficient (cm<sup>-1</sup>) at 5 µm

| Material | 25°C | 250°C | 500 °C |
|----------|------|-------|--------|
| Spinel   | 0.4  | 0.7   | 1.3    |
| Sapphire | 0.8  | 1.3   | 2.4    |
| ALON     | 1.6  | 2.4   | 3.7    |

Bridging the Gap Between Research and the Marketplace



# **Characterization of Polycrystalline Transparent Spinel**

1.6

1.55 0

1

| ion     | Composition                         | MgAl <sub>2</sub> O <sub>4</sub>      |  |
|---------|-------------------------------------|---------------------------------------|--|
|         | Grain Size                          | 150-500μm                             |  |
|         | Crystal Structure                   | Cubic, spinel, isotropic              |  |
|         | Density                             | 3.58g/cc                              |  |
| riza    | Form                                | polycrystalline                       |  |
| acte    | Melting Point                       | 2135°C                                |  |
| har     | Young's Modulus                     | 277 GPa                               |  |
| elo     | Shear Modulus                       | 192 GPa                               |  |
| pin     | Poisson's Ratio                     | 0.26                                  |  |
| arent S | Hardness<br>(Knoop, 200g)           | 1645 Kg/mm                            |  |
| anspa   | Fracture Toughness                  | 1.5-2.0 Mpa-m1/2                      |  |
| T       | Flexure Strength                    | 185-250 MPa                           |  |
| Iline   | Specific Heat                       | 0.21 cal/g-°C                         |  |
| crysta  | Thermal Conductivity,<br>RT         | 14.7 W/m-°K                           |  |
| Poly    | Coefficient of<br>Thermal Expansion | 25-100°C = 6.09x10 <sup>-6</sup> /°C  |  |
|         |                                     | 25-500°C = 7.30x 10 <sup>-6</sup> /°C |  |
|         |                                     | 25-1000°C = 7.90x10 <sup>-6</sup> /°C |  |
|         | Refractive Index                    | 1.7108                                |  |



#### % Transmission Superiority over sapphire and ALON at 4.8µm

| °C  | Sapphire | ALON |
|-----|----------|------|
| 25  | 4%       | 8%   |
| 250 | 5%       | 9%   |
| 500 | 5%       | 13%  |



### **Spinel Dielectric Properties**

|               | 1KHz    | 1MHz   | 9.3GHz |  |
|---------------|---------|--------|--------|--|
| Constant      | 8.2     | 8.2    | 8.3    |  |
| Loss<br>Index | 0.00025 | 0.0002 | 0.0001 |  |

#### **Erosion Resistant Material**

No Rain Erosion at

470 mph for 20 min

1.0"/min rate with 2mm avg. drop size

#### No Sand Erosion at

75 m/s with 149-177  $\mu$ m at 3 mg/cm2 loading 210 m/s with 38-44  $\mu m$  at 12 mg/cm2 loading



2

3

Wavelength (um)

4

5

6

#### **Corrosion Resistance Performance**

|                                            | % Transmission Loss at 0.4μm |         | % Transmission Loss at 4.0μm |         |
|--------------------------------------------|------------------------------|---------|------------------------------|---------|
| Environment                                | 30 hrs                       | 100 hrs | 30 hrs                       | 100 hrs |
| 50% HF at 20 C                             | 2%                           | 2%      | <1%                          | <1%     |
| 50% H <sub>2</sub> SO <sub>4</sub> at 20 C | <1%                          | <1%     | <1%                          | <1%     |
| 50% H₂SO₄ AT 100 C                         | 2%                           | 10%     | <1%                          | <1%     |
| 50% HNO <sub>3</sub> at 20 C               | <1%                          | <1%     | None                         | None    |
| 50% NaOH at 20 C                           | None                         | None    | None                         | None    |
| Sea Water at 20 C                          | None                         | None    | None                         | None    |
| Jet Fuel at 20 C                           | None                         | None    | None                         | None    |

# Bridging the Gap Between Research and the Marketplace



**Optical Ceramics Division** 

# **Equipment and Processing Capabilities**

## **Vacuum Hot Pressing**

Technology Assessment & Transfer operates and maintains a wide variety of furnaces to develop and produce its transparent spinel ceramics. Currently, 30-ton, 250-ton and 600-ton vacuum hot presses are used to manufacture the majority of spinel components. TA&T hot presses are capable of fabricating spinel windows over 400 in<sup>2</sup>.

### **Pressureless Sintering**

Pressureless sintering offers the potential for lower cost, large economies of scale production for both military and commercial products. A variety of forming methods are available for hemispherical, ogive and aspherical shaped components which can also lead to lower cost processing methods depending on the size and shape of the component.

### **Other Processing and Characterization Capabilities**

| Lamination                           | Calcining                |
|--------------------------------------|--------------------------|
| Particle Size Distribution           | Polishing                |
| Surface Area                         | White light Haze testing |
| UV-vis and FTIR Transmission Spectra | Coatings                 |

# For more information, please visit our website, www.techassess.com

#### Dr. Larry Fehrenbacher President Technology Assessment & Transfer, Inc 133 Defense Hwy, Suite 212 Annapolis, MD 21401 Phone # 1-410-244-3710 larry@techassess.com

Mr. Jeffrey J. Kutsch Director TA&T Optical Ceramics Div. 215 Najoles Road Millersville, MD 21108 Phone # 1-410-987-1656 jkutsch@techassess.com

#### For detailed quotes call:

TA&T Optical Ceramics Div. 215 Najoles Road Millersville MD 21108 Phone # 1-410-987-1656

Bridging the Gap Between Research and the Marketplace